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SUMMARY 
The axial singularity inverse method for designing bodies of revolution has been improved by using 
higher-order doublet elements. The performance of the method for various element orders and other 
solution parameters is presented in detail. The results indicate that the method is generally more robust, 
less sensitive to insets and has a better-conditioned coefficient matrix compared with the source method 
of the same order. The condition number of the matrix is shown to increase with the thickness of the body, 
the order of the method, the number of elements and the degree of stretching of the node distribution. In 
general, good performance is attained for most bodies even with f, as low as 2 by using 10-12 second-order 
doublet elements with insets greater than 0-02L from rounded ends. Increasing the insets to 0.06L appears 
to improve the accuracy of the method for most bodies but slows its convergence. 
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1. INTRODUCTION 

In the direct approach of aerodynamic design a component shape is manipulated either manually 
based on experience or by using an optimization scheme to  achieve design goals. In the inverse 
approach the pressure (or velocity) distribution is manipulated and the corresponding body 
geometry is obtained. The inverse approach is much more effective than the direct one, since 
the aerodynamic characteristics of a body are easier to relate to its pressure distribution than 
to its shape. Inverse design techniques have been successfully used for some time in designing 
2D aerodynamic shapes such as high-lift and low-drag aerofoik2 The use of these techniques 
for bodies of revolution has been fairly limited so far because of two reasons. First, these bodies 
are not intended to generate lift, leaving drag reduction as the primary design objective. The 
potential for drag reduction by delaying transition has been very small owing to surface finish 
limitations and high Reynolds number. With new manufacturing techniques and materials the 
surface finish limitation is not valid any more for a growing number of applications such as 
small aircraft  fuselage^,^ external stores and torpedoes. The second reason is the lack of an 
efficient and robust solution for the axisymmetric inverse problem. The available solutions are 
necessarily iterative because of the unknown boundary. Surface singularities are used to represent 
the body in one class of methods,4.’ while line sources distributed along the body axis are used 
in another.6 Surface singularity methods appear to be more robust and can handle a wider range 
of shapes, while the axial source method is computationally much more efficient. This latter 
method typically converges in four iterations compared with 1&24 iterations for surface 
singularity methods, with much fewer computations per iteration. However, the method often 
produces ill-conditioned matrices and is sensitive to the number and distribution of elements 
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and control points for thick bodies and for bodies with sudden changes in curvature. Sensitivity 
to the distance between the ends of the singularity distribution and body ends (insets) has also 
been reported. 

The objective of this paper is to make the axial singularity method more robust over a wide 
range of geometries while retaining its simplicity and computational efficiency. This is achieved 
by exploring the use of high-order line doublet elements to represent the body instead of the 
currently used line source elements. The use of doublets to represent bodies of revolution is not 
new; however, it has been limited to the solution of the direct problem. Only recently the author 
and his colleagues7 used linear doublet elements in an inverse method to design low-drag fuselage 
shapes. However, the performance of that method was not studied. In the present work the 
inverse method is extended to utilize doublet elements with an arbitrary (polynomial) intensity 
distribution. The performance of the method is then investigated for various orders of distribu- 
tion and other solution parameters and is compared with that of the source method using 
carefully chosen test cases. 

2. RELATED STUDIES 

The surface source method of Bristow4 appears to be the first inverse method for bodies of 
revolution (1974). In that method the body geometry is updated in each iteration such that the 
mean square difference between the prescribed velocity distribution and the velocity distribution 
calculated by the Douglas-Neumann surface source method is reduced. The method converged 
nicely in 10 iterations in the three examples presented by B r i ~ t o w . ~  Another surface singularity 
inverse method has been presented very recently (1991) by Dinavahi and Chow.5 The method 
employs surface vortex sheets and has an iterative scheme very similar to that of Zedan and 
Dalton,6 thus eliminating the need to solve the direct problem in every iteration as in Bristow's 
method. While this reduced the calculations per iteration, the method needed 24 iterations to 
converge in most of the test cases presented, even after using a weighting factor to accelerate 
convergence. 

Three years after Bristow's method, Zedan and Dalton6 presented a much simpler solution 
in which the body is represented by line source elements along its axis, each with constant 
intensity. The method converged nicely in four iterations for simple body shapes. Elements with 
linearly varying strength* were used later to extend the range of application of the method to 
bodies with an inflection point. Higher-order source elements' were also investigated for both 
direct and inverse problems. The study showed that the performance of the method for a 
particular element order improves as the number of elements increases up to an optimum number 
beyond which the solution deteriorates. Since that work' was published in 1980, a number of 
studies on optimizing the axial singularity distribution for solving the direct problem have 
appeared but none for the inverse problem. These efforts include optimization of the location 
of point sources along the axis," use of least squares procedures" and other smoothing 
techniques" to determine the singularity distribution and a studyI3 on the effect of insets, the 
number and distribution of elements as well as the use of doublet elements instead of source 
elements for axial flow. Recently14 it has been shown that the use of linear doublet elements 
provides a more robust and generally more accurate solution to the direct problem. This study 
also showed that the matrix of doublet direct methods has a condition number an order of 
magnitude smaller than that for source methods, thus allowing the use of a higher number of 
elements. This provides a better representation of bodies over a wider range of geometry and 
fineness ratio. 

The above efforts are generally lacking for the inverse method. The only exception is the 
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recent use of linear doublet elements to solve the inverse p r ~ b l e m . ~  However, this inverse doublet 
method was only derived for elements with linear (or constant) distribution. Based on limited 
test cases, the method was shown to be promising; however, its performance was neither 
evaluated for various solution parameters nor for ‘difficult’ body shapes. 

3. MATHEMATICAL DESCRIPTION 

Axial flow around an axisymmetric body may be obtained by adding a uniform stream with 
velocity V, to a distribution of line doublets of intensity px between x, and x, along the body 
axis. The doublet distribution is discretized into elements as shown in Figure 1. In the element 
co-ordinate system the streamfunction of an element is 
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Figure 1. Definition sketch of elements, control points and co-ordinate systems 
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where pc is the element doublet intensity distribution. The velocity components induced by this 
element are obtained by differentiating +. The resulting expressions are 

The intensity distribution over the element is represented by a polynomial of degree v,  

k =  1 

Substituting pc  from equation (4) into equations (2)-(3), one obtains 

where 

Fortunately, these integrals can be evaluated in closed form as given in Appendix 11. The flow 
field around the axisymmetric body at a point (x, r)  is obtained by adding the uniform flow to 
the contributions of all elements. At a control point i on the body surface we have 

where 

t i  = xi - xj, q.  1 = y. 1 7  (8) 

x j  is the x-coordinate of the leading edge of element j in the body co-ordinate system, v j  is the 
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degree of the polynomial distribution of elementj and ajk with k = 1 to v j  represent the unknown 
coefficients of the polynomial distribution of element j. Equations (7) are recast in the form 

m = l  

N 
ui = 1 VimCm, 

m= 1 

where 

and c, represent the unknown polynomial coefficients aj,of all elements after being arranged 
in one array. Note that the influence matrices $, lJ and V are functions of the geometry only. 
The continuity of the distribution at the node between elements j and j + 1 requires 

v,+ 1 C ajkl;-' = a j + l , l .  
k =  1 

We have n, - 1 such conditions for j = 1 to n, - 1 .  
The solution of the inverse problem from this point on follows essentially the iterative 

procedure given by Zedan and Dalton.' In brief, the procedure starts with an initial smooth 
geometry such as an ellipsoid of high fineness ratio for which the slopes (drldx), at the control 
points and the matrices $ij, 0, and Vij are computed. The axial velocity components ui at the 
control points on the body surface are obtained from the given velocity distribution by applying 
the tangency condition. The coefficients of the doublet distribution c, for methods with order 
higher than zero are obtained by solving a system of linear equations consisting of equation 
(9b) applied at the control points in addition to the continuity condition (equation (11)) 
applied at the n, - 1 nodes between elements. The best results for the present doublet method 
are obtained with n, + 1 control points at the x-co-ordinates of the nodes and v j  - 1 control 
points evenly distributed over each element. In the zeroth-order method the continuity condition 
is not enforced and one control point per element at its middle is used. A new set of control 
point ordinates ri is obtained by setting $i = 0 on the body surface in equation (9a). This 
gives 

The computed values of ri replace the previous geometry and the above procedure is 
repeated until convergence is attained. Note that convergence is determined based on the 
computed radius; for more discussion on convergence criteria the reader is referred to 
Reference 6. 
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0.8 

4. RESULTS AND DISCUSSION 

The doublet method described above and the source methodg have been programmed on a 
PC-AT microcomputer. In both methods body co-ordinates are normalized by L, velocities by 
V, and $ by VmL2. The two programmes are identical with the exception of the subroutines 
forming the influence matrices and those setting up the control points. The control points are 
selected for the doublet method as described above. As for the source m e t h ~ d , ~  v j  control points 
are uniformly distributed along each element; the system of equations to determine c,,, is closed 
by satisfying the continuity condition at the n, - 1 nodes between elements and by using the 
zero-net-source-efflux condition. These slightly different control point schemes for the doublet 
and source methods are chosen in order to give the best performance for each method. In the 
following presentation the doublet method is first calibrated and verified via test cases, then its 
performance is compared with that of the source method for various solution parameters. 

4.1. Test cases 

The first test case is the dumb-bell profile used recently by HemschI2 to verify direct problem 
solutions. The meridian line of this profile is described by 

r /L  = ~ E J {  bX( 1 - X ) [  1 - bX( 1 - X ) ] } ,  

where E = rmar/L and b is a geometrical parameter. We chose a profile with E = 0.11 (f, = 4.55) 
and b = 3 (Figure 2(a)). Hemsch found this particular profile to be troublesome to the axial 
singularity direct method and therefore we think it is a challenge for the inverse method. A 
highly accurate velocity distribution for this body obtained by the author14 was input to the 
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doublet inverse method. Using 10 elements with a parabolic intensity distribution extending 
from X ,  = 0.0433 to X ,  = 0.9567, the computed radius converged to the exact profile in four 
iterations as shown in Figure 2(b). These values of X ,  and X ,  were obtained from expressions'* 
derived for a source distribution on the basis of the slender body theory. The doublet distribution 
computed in various iterations is shown in Figure 2(c). Figure 2(d) shows almost perfect 
agreement between the input velocity and the velocity computed from the doublet distribution 
in iteration 4. 

The second test case is a drop-shaped body which is thicker (f, = 2.0) than the dumb-bell 
profile. This body is formed by adding a point source and a line sink to a uniform streamI5 
and therefore its velocity distribution can be calculated exactly. With X ,  and X ,  chosen as 0.04 
and 0.98 respectively and using 10 parabolic elements, the inverse doublet method was used to 
compute this body. Figure 3(a) shows that the solution converged to the exact body in the fourth 
iteration, at which the computed velocity distribution agrees very well with the input (exact) 
velocity as shown in Figure 3(b). 

' 

4.2. Performance of the method 

The results of the above test cases showed clearly that the doublet method works well for 
bodies with non-simple geometries as well as for thick bodies. However, the effect of input 
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Figure 3. Second-order doublet solution for drop-shaped profile (I; = 2): (a) convergence of computed radius; (b) 
comparison of input and computed velocity distributions 
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parameters such as X ,  and XI, the number and distribution of elements and the order of element 
distribution on the performance of the method is not known and is therefore studied below. 
Comparison is made with the performance of the source method’ for which the effects of such 
parameters are also largely unknown, at least quantitatively. The performance is measured 
mainly in terms of the accuracy of the computed meridian line (radius). The speed of convergence 
and the condition number of the coefficient matrix are also of interest. Axial singularity methods 
are known to occasionally produce ill-conditioned matrices with adverse effects on accuracy. A 
condition number estimate (COND) is obtained by using the method of Reference 16. The matrix 
is considered ‘computationally singular’ for a particular computer if COND is so large that 
COND = COND + 1.0 on that machine. This corresponds to COND z 10’ for the present 
machine. Lower values of COND indicate better-conditioned matrices. Although the doubtlet 
and source methods as derived allow the mixing of elements of various orders, we limit the 
discussion here to elements of the same order. 

4.2.1. Eflect of order of element intensity distribution. We investigate systematically doublet 
methods with orders zero to three and compare their performance with corresponding source 
methods’ for a number of shapes. Only equal-length elements are used. The number of elements 
is chosen such that the number of algebraic equations remains the same for all orders. With 10 
elements for the second-order method this gives 15 and 30 elements for the first- and zeroth-order 
methods respectively and approximately seven elements for the third-order method. 

The first body is the dumb-bell profile discussed earlier. X ,  and XI are fixed at the ‘correct’ 
values (0.0433 and 0.9567) for this profile.12 To condense the results, we present the root mean 
square of the error in the computed radius ( r /L)  at various iterations in Figure 4. The results 
for the iteration with minimum error are summarized in the left half of Table I. These results 
indicate that the accuracy of the doublet method improves as the order increases to the third. 
The third-order method gave an extremely low RMS error of 0.487 x The performance 
of the source method does not show a consistent trend and is generally inferior to the doublet 
method except for the zeroth order. Also, for a given order the rate of convergence of the doublet 
method is equal to or faster than that of the source method. The condition number estimate 
(COND) of the coefficient matrix is shown in Figure 4(c). In general, doublet methods have 
lower COND than source methods of the same order. Also, the higher the order is, the larger 
COND is, with the exception of the linear source method which has lower COND than the 
zero-order source method. Figure 5(a) shows the doublet intensity distribution as computed at 
the nodes in the convergence iteration for various orders. The second- and third-order methods 
provide the smoothest variation, followed by the first-order method. The zeroth-order solution 
shows considerable oscillations near body ends. The corresponding results for the source 
methods in Figure 5(b) indicate a relatively smooth second-order solution, a first-order solution 
with some oscillations and highly oscillatory zeroth- and third-order solutions. 

A similar investigation was made using the thick drop-shaped profile discussed earlier (f, = 2). 
The RMS error in the computed radius at various iterations is shown in Figure 6(a). The minima 
of these RMS errors and corresponding iteration numbers are summarized in the left half of 
Table 11. These results indicate that doublet methods are more accurate than source methods 
for all orders, with the third- and second-order methods being the most accurate, followed by 
the first- and zeroth-order methods respectively. As for the source methods, the third-order 
solution diverged because of a near-singular coefficient matrix, while the second- and first-order 
solutions have comparable accuracy. The condition number results presented in Figure 6(b) 
indicate that the third-order methods have the highest COND, followed by the second-order 
methods, while the first-order methods have the lowest values. We also observe that the values 
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Figure 4. RMS error in radius of dumb-bell profile as computed by doublet and source methods of various orders at 
various iterations and corresponding condition number estimates 

Table I:  Effect of element order of distribution on the RMS error in computed radius and speed 
of convergence for the dumb-bell profile (f, = 4.55) 

RMS error for neq = 30 RMS error for n, = 21 
(iter. no.) (iter. no.) 

Element 
order Doublet Source Doublet Source 

3 0.487 x 10-3(4) 0.1586 x 10-’(4) 0.487 x 10-3(4) 0.1586 x 10-*(4) 
2 0.6057 x 10-3(4) 0.13007 x 10-’(5) 0.6057 x 10-3(4) 0.13007 x 10-’(5) 
1 0.112 x 10-’(3) 0.1911 x 10-’(4) 0.681 x 10-3(4) 0.1309 x 10-’(5) 
0 0152 x 10-’(5) 0424 x 1OP3(5) 0.410 x 10-3(4) 01131 x 10-’(5) 
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(b) source methods 

of COND in Figure 6(b) are much higher than the corresponding values in Figure 4(c) for the 
dumb-bell profile. Moreover, the values of COND for doublet and source methods of the same 
order are much closer to each other in the present case. The reason for this may be the low 
fineness ratio of the drop-shaped profile used (f, = 2). 

The whole investigation was repeated for this body and for the dumb-bell profile while fixing 
the number of control points, n, at nearly 21 for all orders (instead of fixing ncq earlier). This 
corresponds to n, = 7, 10, 20 and 20 elements for the third-, second-, first- and zeroth-order 
methods respectively. The RMS errors for the convergence (minimum error) iteration are shown 
in the right halves of Tables I and 11. These results support the earlier conclusion that doublet 
methods are superior to source methods, especially for the thicker body. We also observe that 
the accuracy of the doublet methods generally improves as the order gets higher. However, we 
recommend that orders higher than the second should be avoided, because COND can assume 
dangerously high values, especially for thick bodies. The accuracy of the source methods 
improves as the order gets lower for the dumb-bell profile, while the first- and second-order 
solutions are the most accurate for the drop-shaped profile. 

4.2.2. Eflect of insets. The sensitivity of the solution to the choice of insets is more critical in 
the inverse problem than in the direct problem, since they are related to the derivatives of the 



SOLUTION OF AXISYMMETRIC INVERSE PROBLEM 425 

Doublet Methods 

_- - -  Source Methods 

1 2 3 4 5 
iter. no. 

2 
6 

1 2 3 4 5 6 
i ter. no. 

Figure 6. Inverse problem solution for dropshaped profile (f, = 2) by doublet and source methods of various orders: 
(a) RMS Error in computed radius; (b) condition number estimate of coefficient matrix 

Table 11. ElTect of element order of distribution on  the RMS error in computed radius and speed of 
convergence for the drop-shaped profile (f, = 2) 

RMS error for neq = 30 RMS error for n, = 21 
(iter. no.) (iter. no.) 

Element order Doublet Source Doublet Source 

3 0.7873 x 10-3(6) Solution diverged 0.787 x 10-3(6) Solution diverged 
2 0.8474 x 10-3(5) 02330 x 10-2(4) 0.847 x 10-3(5) 0.233 x 10-2(4) 
1 0.1471 x 10-’(5) 0,2553 x 10-2(4) 0855 x 10-3(5) 0.245 x 10-’(4) 
0 0.176 x 10-’(4) 0,642 x 10-’(5) 0,181 x 10-’(4) Solution diverged 

meridian line,’’ which is not known in advance in the inverse problem. Zedan and D a l t ~ n ~ . ~ . ~  
used X, = 0.02 and X, = 0.98 in most of their studies without proper justification. Here we 
investigate the sensitivity of second-order inverse methods while fixing n, at 10. The first test 
case is the dumb-bell profile used earlier. X ,  and X, are varied around the values obtained from 
the slender body expressions” (X, = 0.0433 and X, = 09567). Figure 7(a) shows the variation 
in the error in the computed radius at convergence along the body for X, = 0.02, 0.0433, 0.06 
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Figure 7. Effect of inset distance X ,  on second-order doublet and source inverse solutions for dumb-bell profile: 
(a) error in computed radius; (b) matrix condition number estimate 

and 0.07 and X ,  = 1 - X,. The doublet method is generally more accurate, less sensitive to X ,  
and converges faster than the source method for X ,  2 0.0433. In fact, the results of the doublet 
method are essentially unchanged for X ,  2 0.0433. The source method has its smallest error 
with X ,  = 0.02. The effect of X ,  on the condition number of the matrix is smaller for the doublet 
method (Figure 7(b)), confirming the relative insensitivity of the method to this parameter 
compared with the source method, especially near convergence. We also notice that the greater 
X ,  is, the higher the condition number is. This is because the control points become closer, thus 
decreasing the independence of the equations. The results in the figure confirm our earlier 
conclusion that the matrix of the doublet methods is better conditioned than that of the source 
methods. Also, it is observed that increasing the insets delays convergence somewhat for the 
doublet method and appreciably for the source method. 

The effect of insets was also investigated for two ellipsoids (exact velocity distribution is known) 
with f, = 5 and 2. The results (not presented) confirm that the doublet method is generally more 
accurate and less sensitive to X,. On the other hand, the source solution for f, = 2 deteriorated 
for X ,  > 0.04 and started diverging after iteration 5,  in which it began losing its symmetry 
because of a near-singular coefficient matrix. 
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4.2.3. Eflect of element distribution. This investigation is again limited to second-order 
methods. The dumb-bell profile is used as the test case with 10 elements extending from 
X, = 00433 to X ,  = 0.9567. The nodes between elements are located according to the expo- 
nential stretching of Hemsch,” 

X j  = X ,  + (1 - p’- ‘)(0.5 - X,)/(l - pnC”), 

in the front half of the body with j = 1, . . . , n,/2 + 1 and p = X j +  l / X j .  The distribution in the 
rear half is similar. The amount of stretching depends on p ;  as p approaches unity, the nodes 
become equally spaced. 

Figure 8(a) shows the variation in the error in the computed radius at convergence along the 
body for various schemes of node distribution. The results of the doublet method are spread 
around the zero error and closer to it than those of the source method, with the least errors 
obtained with p = 1.0, followed by those with p = 1 . 1  and 1.2 respectively. The smallest errors 
for the source method are obtained with p = 1-2, but their distribution is not symmetric around 
X = 05. The worst results for both methods are obtained with a cosine node distribution, which 
may be attributed to a two-order-of-magnitude jump in the matrix condition number (Figure 
8(b)). In fact, it caused the source method to diverge after the second iteration. The error results 
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for this distribution are not shown in Figure 8(a) because of being substantially larger than those 
presented. In general we notice that the condition number increases with increasing degree of 
stretching for both methods. This is probably due to the control points near body ends becoming 
closer to each other, which increases the dependence among the matrix rows corresponding to 
these control points. 

4.2.4. Eflect of number of elements. This investigation is also limited to second-order methods. 
Two ellipsoids are used as test cases; one is thin with f, = 5, while the other is thick withf, = 2. 
The number of singularity elements, ner is varied between eight and 14 equal-length elements in 
steps of two. X ,  and X ,  are fixed at 0.02 and 0.98 for f, = 5 and at 0.04 and 0.96 for f, = 2 
respectively. The distribution of the error in the computed radius along the body is given in 
Figure 9, while other results are summarized in Table 111. For both ellipsoids we observe that 
the doublet method consistently gives lower error than the source method and that the matrix 
condition number for both methods increases with the number of elements. For f, = 5 the error 
of both methods drops as n, increases, while for f, = 2 it decreases as n, increases from eight 
to ten and then increases again with further increase in n,. In fact, with 14 elements the doublet 
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Figure 9. Effect of number of elements on error in radius as computed by second-order inverse methods for ellipsoids 
of revolution: (a) f, = 5; (b) J = 2 
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Table 111. Effect of number of elements on rate of convergence, matrix condition number and RMS error 
in computed radius for ellipsoids of revolution 

Second-order doublet method Second-order source method 

n, Iter. no. COND ERMS Iter. no. COND ERMS 

8 
10 
12 
14 

8 
10 
12 
14 

5 
6 
6 
5* 

0.702 x lo5 
0.134 x lo6 
0.223 x lo6 
0.352 x lo6 

0.638 x lo7 
0.323 x lo9 
0.488 x lo9 
0.167 x 10" 

I; = 5.0 

0.330 x 
0.236 x 
0.159 1 0 - 3  
0.117 x 1 0 - 3  

0.509 1 0 - 3  

I; = 2.0 

0.293 x 
0.297 x 
0.878 x 

5 
5 
6 
3* 

0,248 x lo5 

0.690 x lo6 
0.353 x lo7 

0.912 105 

0,306 x 10' 
0.700 x lo9 
0.479 x lo9 
0.150 x 10" 

0.117 x 
0.100 x 10-2 
0.870 x 
0.783 x 

0202 x 1 0 - 2  
0.131 x 10V2 
0.208 x 
0.107 x lo-' 

* Solution diverged after this iteration. 

method diverges for this thick body after the fifth iteration, in which a body with reasonably 
good accuracy is computed, while the source method diverges after the third iteration, where 
the computed body is quite far from the exact one. This different behaviour of error with n, for 
the two bodies is attributed to the difference in matrix condition number. For f ,  = 5 the matrix 
is well conditioned for all values of n, and therefore higher n, means better representation of 
the body and thus greater accuracy. For f ,  = 2, although higher n, is supposed to give better 
representation of the body, the sharp rise in COND with n, (the matrix is near-singular for 
n, > 10 for the doublet method and for n, 2 8 for the source method) causes the observed rise 
in error for n, 2 12. We further observe that the doublet method converges faster than the 
source method for f, = 5 and at comparable rate for f ,  = 2. The superior performance of 
the doublet methods is in spite of the fact that using ellipsoids as test cases favours source 
methods." 

Normalizing the co-ordinates by element length instead of body length reduced the matrix 
condition number sharply, sometimes by more than two orders of magnitude. This caused 
essentially no change in the computed radius in the cases where the matrix was originally not 
near-singular. In the cases with originally near-singular matrix the reduction in COND was not 
as dramatic and the effect on the results was not consistent. 

5. CONCLUDING REMARKS 

Higher-order line doublets have been used in an iterative scheme developed previously to solve 
the axisymmetric inverse problem in incompressible potential flow. The method has been verified 
in detail via carefully chosen test cases. The effect of the order of the distribution on the 
performance of the method was investigated and compared with that of the line source method. 
The performance was measured in terms of the accuracy of the computed radius, the speed of 
convergence and the coefficient matrix condition number. The sensitivity of the results to solution 
parameters such as insets and the number and distribution of elements along the axis was 
investigated. 
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Doublet methods were found to be generally more accurate and less sensitive to insets than 
source methods of the same order, especially for bodies with low f,. Moreover, these methods 
had better-conditioned coefficient matrices and converged faster for bodies with moderate-to- 
high f,. A second-order doublet method with equally spaced nodes or a slightly stretched node 
distribution appears to have the best performance. Increasing the number of elements provides 
better representation of the body; however, it increases the matrix condition number. Therefore 
we recommend the use of the maximum number of elements provided that the matrix does not 
become singular to computing accuracy. Ten second-order elements appear to be satisfactory 
for most bodies. The matrix condition number was also found to increase with the degree of 
stretching of the node distribution, the size of insets and sharply with the body thickness ratio 
for both methods. Increasing the insets above 0.02L and up to 0.06L from rounded ends slowed 
the convergence of both methods; however, it improved the accuracy of the doublet method 
and reduced the accuracy of the source method in general. 

APPENDIX I: NOMENCLATURE 

array for polynomial coefficients of singularity distribution over elements 
condition number estimate of coefficient matrix 
root mean square of error in computed radius r/L 
body fineness ratio (length/maximum diameter) 
body length and length of axial singularity element respectively 
number of unknown polynomial coefficients of singularity distribution 
number of control points and number of singularity elements respectively 
number of equations 
local velocity on body surface 
radial co-ordinate and local body radius 
exact body radius 
axial and radial components of q 
freestream velocity 
axial co-ordinate starting at nose; X = x/L 
axial location of beginning and end of singularity distribution respectively; X, = x,/L, 

Stokes stream function 
intensities of doublet and source distributions respectively 
order of polynomial distribution over an element 
parameter for stretching node distribution 

x, = x, /L 

APPENDIX I1 : CLOSED-FORM EXPRESSIONS OF INTEGRAL FUNCTIONS 

The integral functions 

are evaluated in closed form with the help of the CRC integration tables.l6 Defining the 
parameters R, = (t - 1 ) 2  + '1' and R ,  = C2 + q2, after some algebraic manipulations we obtain 
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